<u>FLOQUIP</u>™ Equipment

FLOQUIP HPV High Pressure Viscometer

Monitoring the viscosity is a key parameter of polymer solution injection during a polymer flood. In order to fulfill customer demands of product consistency and guality, viscosity measurement is requested.

Viscosity is the resistance to flow. Numerous technologies have been developed and used to measure the resistance. Those are spindle-rotation, vibrating, acoustic, falling ball, and glass capillaries to name a few. These methods simply give index rather than measuring the true viscosity for non-Newtonian liquids like polymer solutions for which viscosity changes with flow rate. This is mainly because most of these technologies are designed for simple Newtonian liquids.

Limited shear rate accessibility from these viscometers makes it impossible to characterize properly the liquid flow behavior under high pressure during fast processes such as polymer flooding.

The FLOQUIP HPV 20 is the viscometer that measures true viscosity. Its measurement principle is based on pressure drop measurement of a flow in a pipe : the principle is well described in numerous rheology books (ie: Fluid flow for Chemical Enginners, from A. Holland, R. Bragg). Liquid For a power law fluid flow through the pipe generates resistance, which in turns generates pressure drop. By measuring the pressure drop at a known flow rate, viscosity is calculated.

Shear rate determination is the key point for measuring the viscosity of a non Newtonian fluid. From the literature, the calculation in a pipe is as follows, where

v is the velocity of fluid in meters/second Q is the flow rate in m³/ second D is the diameter of the pipe in meters n consistency index from the power law model.

For a newtonian fluid

$$\dot{\gamma} = \frac{8 \cdot v}{D}$$
 or $\dot{\gamma} = \frac{4 \cdot Q}{\pi \cdot R^3}$

$$\dot{\gamma} = \frac{8 \cdot v}{D} \cdot \frac{(3n+1)}{4n}$$
or
$$\dot{\gamma} = \frac{Q}{\pi \cdot R^3} \cdot \frac{(3n+1)}{n}$$

From a rotational viscometer the viscosity profile versus shear rate of the polymer solution is determined, so that can be compared with the pressure drop given by the FLOQUIP HPV 20 viscometer.

A direct relationship gives the true viscosity of the fluid solution flowing in the pipe.

avec pupitre milieu non ATEX

pupitre déporté milieu ATEX

A ISSUE	23/01/2012 DATE	Première créati	ON MODIFICATIONS		pb: DR	ourge AWING	pbounge CHECKING
	- SCALE 1:10	-	ASSEMBLY : PART : EN	VISC Semble	OSIMETRE VISCOSI	EVD METRE	2
S	SNF SAS	WEIGHT (kg) 267.62		12	200	00	01
ZAC 421	DE MILIEUX 63 ANDREZIE	X Tel: C EUX CEDEX Fax : e-mail	04 77 36 86 00 04 77 36 86 90 : info@snf.fr	THIS DOCUMENT TRANSMITTED AND/OR D	IS DUR PROPERTY, IT CANNO ISCLOSED WITHOUT PRIOR W	IT BE USED, Ritten permissio	DN 1/1 A3.

31011		
9	Bride 1/2" serie 1500 taraudée 1/2 NPT (tampon usiné 1/2NPT)	
11	flexible 1/2" embout 1/2NPT tube 1/2" L=1200mm	SS-XT8 TA8 PM8-120
	Vanne à boisseau sphérique série 40	
12	en acier inoxydable,raccords pour	SS-4558
	tubes Swagelok 1/2 "	
13	Filtre double avec by-pass MAHLE	PI 3705-12
14	Adaptateur 1" ISO-BSP tube 1/2"	
ង	Union coudé 90° tube 1/2"	SS-810-9
16	Passage de doison tube 1/2"	SS-810-R1-8
17	Passage de doison 1/2 NPT tube 1/2"	SS-810-11-8
18	Amortisseur de pulsation	WI-1917
19	Adaptateur 3/8 NPT tube 1/2"	SS-8-TA-1-6
8	Pompe a engrenages	mzr-11557
21	connecteur male 3/8" tube 1/2"	SS-810-1-6
22	flexible 1/2" embout tube 1/2" L=37cm	SS-XT8 TA8 TA8-37cm
23	Coude 90* male 1/2 NPT tube 1/2"	SS-810-2-8
24	Debitmetre	CMFSO10M319N2FZFCZ
52	Transmetteur	C1700R12AFFFZZZ
26	Té union tube 1/2"	SS-810-3
27	Adaptateur 1/2 NPT tube 1/4"	SS-400-1-8
28	Capteur differentiel	2051CD3A02A1ASK1D4C
8	Manifold	0305RC52B11B4L4
8	Réducteur tube 1/2" - 1/4"	SS-400-R-8
31	Raccord union 1/2"	SS-810-6
32	Raccord rapide	SS-QF8-B-810
33	Raccord rapide	SS- QF8-S-810
77	Rohine cintrée 1/2" 20m	

